225 research outputs found

    Nutrition Strategies for Triathlon

    Get PDF
    Contemporary sports nutrition guidelines recommend that each athlete develop a personalised, periodised and practical approach to eating that allows him or her to train hard, recover and adapt optimally, stay free of illness and injury and compete at their best at peak races. Competitive triathletes undertake a heavy training programme to prepare for three different sports while undertaking races varying in duration from 20 min to 10 h. The everyday diet should be adequate in energy availability, provide CHO in varying amounts and timing around workouts according to the benefits of training with low or high CHO availability and spread high-quality protein over the day to maximise the adaptive response to each session. Race nutrition requires a targeted and well-practised plan that maintains fuel and hydration goals over the duration of the specific event, according to the opportunities provided by the race and other challenges, such as a hot environment. Supplements and sports foods can make a small contribution to a sports nutrition plan, when medical supplements are used under supervision to prevent/treat nutrient deficiencies (e.g. iron or vitamin D) or when sports foods provide a convenient source of nutrients when it is impractical to eat whole foods. Finally, a few evidence-based performance supplements may contribute to optimal race performance when used according to best practice protocols to suit the triathlete’s goals and individual responsiveness

    Multiphysics simulation of a microfluidic perfusion chamber for brain slice physiology

    Get PDF
    Understanding and optimizing fluid flows through in vitro microfluidic perfusion systems is essential in mimicking in vivo conditions for biological research. In a previous study a microfluidic brain slice device (μBSD) was developed for microscale electrophysiology investigations. The device consisted of a standard perfusion chamber bonded to a polydimethylsiloxane (PDMS) microchannel substrate. Our objective in this study is to characterize the flows through the μBSD by using multiphysics simulations of injections into a pourous matrix to identify optimal spacing of ports. Three-dimensional computational fluid dynamic (CFD) simulations are performed with CFD-ACE + software to model, simulate, and assess the transport of soluble factors through the perfusion bath, the microchannels, and a material that mimics the porosity, permeability and tortuosity of brain tissue. Additionally, experimental soluble factor transport through a brain slice is predicted by and compared to simulated fluid flow in a volume that represents a porous matrix material. The computational results are validated with fluorescent dye experiments

    Doses to internal organs for various breast radiation techniques - implications on the risk of secondary cancers and cardiomyopathy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Breast cancers are more frequently diagnosed at an early stage and currently have improved long term outcomes. Late normal tissue complications induced by adjuvant radiotherapy like secondary cancers or cardiomyopathy must now be avoided at all cost. Several new breast radiotherapy techniques have been developed and this work aims at comparing the scatter doses of internal organs for those techniques.</p> <p>Methods</p> <p>A CT-scan of a typical early stage left breast cancer patient was used to describe a realistic anthropomorphic phantom in the MCNP Monte Carlo code. Dose tally detectors were placed in breasts, the heart, the ipsilateral lung, and the spleen. Five irradiation techniques were simulated: whole breast radiotherapy 50 Gy in 25 fractions using physical wedge or breast IMRT, 3D-CRT partial breast radiotherapy 38.5 Gy in 10 fractions, HDR brachytherapy delivering 34 Gy in 10 treatments, or Permanent Breast <sup>103</sup>Pd Seed Implant delivering 90 Gy.</p> <p>Results</p> <p>For external beam radiotherapy the wedge compensation technique yielded the largest doses to internal organs like the spleen or the heart, respectively 2,300 mSv and 2.7 Gy. Smaller scatter dose are induced using breast IMRT, respectively 810 mSv and 1.1 Gy, or 3D-CRT partial breast irradiation, respectively 130 mSv and 0.7 Gy. Dose to the lung is also smaller for IMRT and 3D-CRT compared to the wedge technique. For multicatheter HDR brachytherapy a large dose is delivered to the heart, 3.6 Gy, the spleen receives 1,171 mSv and the lung receives 2,471 mSv. These values are 44% higher in case of a balloon catheter. In contrast, breast seeds implant is associated with low dose to most internal organs.</p> <p>Conclusions</p> <p>The present data support the use of breast IMRT or virtual wedge technique instead of physical wedges for whole breast radiotherapy. Regarding partial breast irradiation techniques, low energy source brachytherapy and external beam 3D-CRT appear safer than <sup>192</sup>Ir HDR techniques.</p

    Phylogenetic Patterns of Colonization and Extinction in Experimentally Assembled Plant Communities

    Get PDF
    Evolutionary history has provided insights into the assembly and functioning of plant communities, yet patterns of phylogenetic community structure have largely been based on non-dynamic observations of natural communities. We examined phylogenetic patterns of natural colonization, extinction and biomass production in experimentally assembled communities.We used plant community phylogenetic patterns two years after experimental diversity treatments (1, 2, 4, 8 or 32 species) were discontinued. We constructed a 5-gene molecular phylogeny and statistically compared relatedness of species that colonized or went extinct to remaining community members and patterns of aboveground productivity. Phylogenetic relatedness converged as species-poor plots were colonized and speciose plots experienced extinctions, but plots maintained more differences in composition than in phylogenetic diversity. Successful colonists tended to either be closely or distantly related to community residents. Extinctions did not exhibit any strong relatedness patterns. Finally, plots that increased in phylogenetic diversity also increased in community productivity, though this effect was inseparable from legume colonization, since these colonists tended to be phylogenetically distantly related.We found that successful non-legume colonists were typically found where close relatives already existed in the sown community; in contrast, successful legume colonists (on their own long branch in the phylogeny) resulted in plots that were colonized by distant relatives. While extinctions exhibited no pattern with respect to relatedness to sown plotmates, extinction plus colonization resulted in communities that converged to similar phylogenetic diversity values, while maintaining differences in species composition

    The Importance of Tree Size and Fecundity for Wind Dispersal of Big-Leaf Mahogany

    Get PDF
    Seed dispersal by wind is a critical yet poorly understood process in tropical forest trees. How tree size and fecundity affect this process at the population level remains largely unknown because of insufficient replication across adults. We measured seed dispersal by the endangered neotropical timber species big-leaf mahogany (Swietenia macrophylla King, Meliaceae) in the Brazilian Amazon at 25 relatively isolated trees using multiple 1-m wide belt transects extended 100 m downwind. Tree diameter and fecundity correlated positively with increased seed shadow extent; but in combination large, high fecundity trees contributed disproportionately to longer-distance dispersal events (>60 m). Among three empirical models fitted to seed density vs. distance in one dimension, the Student-t (2Dt) generally fit best (compared to the negative exponential and inverse power). When seedfall downwind was modelled in two dimensions using a normalised sample, it peaked furthest downwind (c. 25 m) for large, high-fecundity trees; with the inverse Gaussian and Weibull functions providing comparable fits that were slightly better than the lognormal. Although most seeds fell within 30 m of parent trees, relatively few juveniles were found within this distance, resulting in juvenile-to-seed ratios peaking at c. 35–45 m. Using the 2Dt model fits to predict seed densities downwind, coupled with known fecundity data for 2000–2009, we evaluated potential Swietenia regeneration near adults (≤30 m dispersal) and beyond 30 m. Mean seed arrival into canopy gaps >30 m downwind was more than 3× greater for large, high fecundity trees than small, high-fecundity trees. Tree seed production did not necessarily scale up proportionately with diameter, and was not consistent across years, and this resulting intraspecific variation can have important consequences for local patterns of dispersal in forests. Our results have important implications for management and conservation of big-leaf mahogany populations, and may apply to other threatened wind-dispersed Meliaceae trees

    Revealing Historic Invasion Patterns and Potential Invasion Sites for Two Non-Native Plant Species

    Get PDF
    The historical spatio-temporal distribution of invasive species is rarely documented, hampering efforts to understand invasion dynamics, especially at regional scales. Reconstructing historical invasions through use of herbarium records combined with spatial trend analysis and modeling can elucidate spreading patterns and identify susceptible habitats before invasion occurs. Two perennial species were chosen to contrast historic and potential phytogeographies: Japanese knotweed (Polygonum cuspidatum), introduced intentionally across the US; and mugwort (Artemisia vulgaris), introduced largely accidentally to coastal areas. Spatial analysis revealed that early in the invasion, both species have a stochastic distribution across the contiguous US, but east of the 90th meridian, which approximates the Mississippi River, quickly spread to adjacent counties in subsequent decades. In contrast, in locations west of the 90th meridian, many populations never spread outside the founding county, probably a result of encountering unfavorable environmental conditions. Regression analysis using variables categorized as environmental or anthropogenic accounted for 24% (Japanese knotweed) and 30% (mugwort) of the variation in the current distribution of each species. Results show very few counties with high habitat suitability (≥80%) remain un-invaded (5 for Japanese knotweed and 6 for mugwort), suggesting these perennials are reaching the limits of large-scale expansion. Despite differences in initial introduction loci and pathways, Japanese knotweed and mugwort demonstrate similar historic patterns of spread and show declining rates of regional expansion. Invasion mitigation efforts should be concentrated on areas identified as highly susceptible that border invaded regions, as both species demonstrate secondary expansion from introduction loci

    An outbreak of post-acupuncture cutaneous infection due to Mycobacterium abscessus

    Get PDF
    BACKGROUND: Despite the increasing popularity of acupuncture, the importance of infection control is not adequately emphasized in Oriental medicine. In December 2001, an Oriental medical doctor in Seoul, South Korea, encountered several patients with persistent, culture-negative skin lesions on the trunk and extremities at the sites of prior acupuncture treatment. We identified and investigated an outbreak of Mycobacterium abscessus cutaneous infection among the patients who attended this Oriental medicine clinic. METHODS: Patients were defined as clinic patients with persistent cutaneous infections at the acupuncture sites. Medical records for the previous 7 months were reviewed. Clinical specimens were obtained from the patients and an environmental investigation was performed. M. abscessus isolates, cultured from patients, were compared by pulsed-field gel electrophoresis (PFGE). RESULTS: Forty patients who attended the Oriental medicine clinic and experienced persistent cutaneous wound infections were identified. Cultures from five of these patients proved positive, and all other diagnoses were based on clinical and histopathologic examinations. All environmental objects tested were negative for M. abscessus, however, most were contaminated by various nosocomial pathogens. Molecular analysis using PFGE found all wound isolates to be identical. CONCLUSION: We have identified a large outbreak of rapidly growing mycobacterial infection among patients who received acupuncture at a single Oriental medicine clinic. Physicians should suspect mycobacterial infections in patients with persistent cutaneous infections following acupuncture, and infection control education including hygienic practice, should be emphasized for Oriental medical doctors practicing acupuncture

    BUGS in the Analysis of Biodiversity Experiments: Species Richness and Composition Are of Similar Importance for Grassland Productivity

    Get PDF
    The idea that species diversity can influence ecosystem functioning has been controversial and its importance relative to compositional effects hotly debated. Unfortunately, assessing the relative importance of different explanatory variables in complex linear models is not simple. In this paper we assess the relative importance of species richness and species composition in a multilevel model analysis of net aboveground biomass production in grassland biodiversity experiments by estimating variance components for all explanatory variables. We compare the variance components using a recently introduced graphical Bayesian ANOVA. We show that while the use of test statistics and the R2 gives contradictory assessments, the variance components analysis reveals that species richness and composition are of roughly similar importance for primary productivity in grassland biodiversity experiments

    Predicted risks of radiogenic cardiac toxicity in two pediatric patients undergoing photon or proton radiotherapy

    Get PDF
    BACKGROUND: Hodgkin disease (HD) and medulloblastoma (MB) are common malignancies found in children and young adults, and radiotherapy is part of the standard treatment. It was reported that these patients who received radiation therapy have an increased risk of cardiovascular late effects. We compared the predicted risk of developing radiogenic cardiac toxicity after photon versus proton radiotherapies for a pediatric patient with HD and a pediatric patient with MB. METHODS: In the treatment plans, each patient’s heart was contoured in fine detail, including substructures of the pericardium and myocardium. Risk calculations took into account both therapeutic and stray radiation doses. We calculated the relative risk (RR) of cardiac toxicity using a linear risk model and the normal tissue complication probability (NTCP) values using relative seriality and Lyman models. Uncertainty analyses were also performed. RESULTS: The RR values of cardiac toxicity for the HD patient were 7.27 (proton) and 8.37 (photon), respectively; the RR values for the MB patient were 1.28 (proton) and 8.39 (photon), respectively. The predicted NTCP values for the HD patient were 2.17% (proton) and 2.67% (photon) for the myocardium, and were 2.11% (proton) and 1.92% (photon) for the whole heart. The predicted ratios of NTCP values (proton/photon) for the MB patient were much less than unity. Uncertainty analyses revealed that the predicted ratio of risk between proton and photon therapies was sensitive to uncertainties in the NTCP model parameters and the mean radiation weighting factor for neutrons, but was not sensitive to heart structure contours. The qualitative findings of the study were not sensitive to uncertainties in these factors. CONCLUSIONS: We conclude that proton and photon radiotherapies confer similar predicted risks of cardiac toxicity for the HD patient in this study, and that proton therapy reduced the predicted risk for the MB patient in this study

    Cross-Attraction between an Exotic and a Native Pine Bark Beetle: A Novel Invasion Mechanism?

    Get PDF
    Aside from the ecological impacts, invasive species fascinate ecologists because of the unique opportunities that invasives offer in the study of community ecology. Some hypotheses have been proposed to illustrate the mechanisms that allow exotics to become invasive. However, positive interactions between exotic and native insects are rarely utilized to explain invasiveness of pests.Here, we present information on a recently formed association between a native and an exotic bark beetle on their shared host, Pinus tabuliformis, in China. In field examinations, we found that 35-40% of P. tabuliformis attacked by an exotic bark beetle, Dendroctonus valens, were also attacked by a native pine bark beetle, Hylastes parallelus. In the laboratory, we found that the antennal and walking responses of H. parallelus to host- and beetle-produced compounds were similar to those of the exotic D. valens in China. In addition, D. valens was attracted to volatiles produced by the native H. parallelus.We report, for the first time, facilitation between an exotic and a native bark beetle seems to involve overlap in the use of host attractants and pheromones, which is cross-attraction. The concept of this interspecific facilitation could be explored as a novel invasive mechanism which helps explain invasiveness of not only exotic bark beetles but also other introduced pests in principle. The results reported here also have particularly important implications for risk assessments and management strategies for invasive species
    • …
    corecore